1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Katrina Bolinger edited this page 2025-02-06 16:00:19 -05:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion parameters to construct, wiki.vst.hs-furtwangen.de experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement learning to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial differentiating function is its support learning (RL) step, which was utilized to fine-tune the design's reactions beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately improving both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, indicating it's geared up to break down complex queries and factor through them in a detailed manner. This guided thinking procedure permits the design to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT capabilities, aiming to create structured responses while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has recorded the industry's attention as a versatile text-generation model that can be integrated into different workflows such as agents, rational thinking and data analysis jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion parameters, allowing effective inference by routing inquiries to the most relevant expert "clusters." This approach enables the model to concentrate on various issue domains while maintaining general performance. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective designs to simulate the behavior and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous material, and evaluate designs against crucial safety criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce several guardrails tailored to different use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, produce a limit increase demand and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For directions, see Establish consents to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, prevent harmful material, and examine designs against key security criteria. You can implement safety steps for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and pick the DeepSeek-R1 model.

The model detail page supplies necessary details about the model's capabilities, prices structure, and execution standards. You can discover detailed usage directions, including sample API calls and code bits for combination. The design supports various text generation jobs, including content production, code generation, and concern answering, utilizing its support finding out optimization and CoT reasoning capabilities. The page likewise includes deployment options and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, select Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a variety of circumstances (between 1-100). 6. For Instance type, select your instance type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended. Optionally, you can configure sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production implementations, you may wish to review these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the release is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive interface where you can try out different triggers and change design specifications like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal outcomes. For example, material for inference.

This is an excellent way to check out the design's reasoning and text generation capabilities before integrating it into your applications. The playground provides immediate feedback, helping you understand how the design responds to different inputs and letting you fine-tune your triggers for ideal results.

You can quickly test the model in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures inference specifications, and sends out a demand to generate text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 convenient methods: utilizing the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you pick the approach that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model internet browser shows available models, with details like the provider name and model capabilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card shows essential details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if suitable), suggesting that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the design card to see the model details page.

    The model details page includes the following details:

    - The design name and provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you deploy the model, it's recommended to review the model details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, use the automatically generated name or create a custom-made one.
  1. For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of instances (default: 1). Selecting suitable circumstances types and counts is vital for expense and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this design, we highly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to release the model.

    The deployment procedure can take numerous minutes to finish.

    When implementation is complete, your endpoint status will change to InService. At this point, the design is ready to accept reasoning demands through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the release is total, you can conjure up the model utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for higgledy-piggledy.xyz reasoning programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, 35.237.164.2 and implement it as revealed in the following code:

    Tidy up

    To prevent undesirable charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the model using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace implementations.
  5. In the Managed releases section, locate the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the correct deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct innovative services using AWS services and sped up compute. Currently, he is concentrated on establishing methods for fine-tuning and optimizing the inference efficiency of big language designs. In his leisure time, Vivek delights in treking, watching movies, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing solutions that assist consumers accelerate their AI journey and unlock organization worth.